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Abstract
We provide a general framework to construct integrable mappings of the plane
that preserve a one-parameter familyB(x, y,K) of biquadratic invariant curves
where parametrization by K is very general. These mappings are reversible
by construction (i.e. they are the composition of two involutions) and can be
shown to be measure preserving. They generalize integrable maps previously
given by McMillan and Quispel, Roberts and Thompson. By considering a
transformation of the case of the symmetric biquadratic to a canonical form, we
provide a normal form for the symmetric integrable map acting on each invariant
curve. We give a Lax pair for a large subclass of our symmetric integrable maps,
including at least a 10-parameter subfamily of the 12-parameter symmetric
Quispel–Roberts–Thompson maps.

PACS numbers: 02.20.-a, 02.30.-f, 05.45.-a

1. Introduction

In recent years there has been growing interest in the study of time-discrete integrable
systems (integrable mappings or maps). In the first instance, this can be explained by
the numerous areas of physics in which integrable mappings prominently feature. These
include: (i) integrable transformations that arise from exactly solvable lattice models in
statistical mechanics [1]; (ii) discrete analogues of integrable systems in classical mechanics
or solid state physics including the top, elliptic billiards and discrete Heisenberg spin
chains [9, 16, 19, 20]; (iii) integrable mappings obtained from reductions of differential-
difference soliton equations [14, 15] or discretizations of integrable partial differential
equations [12, 13].

As well as being of physical interest, the study of integrable systems has intrinsic
mathematical appeal. Some of the topics that have been investigated for such systems include
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(cf the collection [4] and the excellent review [5] and references therein): necessary and
sufficient conditions for integrability, discrete Painleve equations, Lax pairs, discrete analogues
of Hamiltonian structures and quantization. In all these areas of investigation, it has proved
useful to have sample classes of integrable maps with which to work.

The present paper aims to extend a large class of planar (i.e. two-dimensional) integrable
maps found previously and, in the process, to show how both the previously found and new
integrable maps can be viewed in a common framework. We call a planar mapping integrable
if it is measure preserving and leaves invariant each curve of a one-parameter family of non-
intersecting curves

C(x, y,K) = 0 (1)

that foliate the plane. Each invariant curve of the family is parametrized by K and is left
invariant so that K = k(x, y) defined explicitly or implicitly by solving (1) for K is an integral
for the map.

Consider the following family of biquadratic curves in the plane:

(α0 + α1K)x2y2 + (β0 + β1K)x2y + (δ0 + δ1K)xy2 + (γ0 + γ1K)x2 + (κ0 + κ1K)y2

+(ε0 + ε1K)xy + (ξ0 + ξ1K)x + (λ0 + λ1K)y + (µ0 + µ1K) = 0. (2)

For any choice of the 18 arbitrary parameters αi, . . . , µi(i = 0, 1), the family of curves (2)
gives a foliation of the x–y plane. This follows since (2) is linear in K and so uniquely
determines K for each point (x, y) (with the possible exception of a single curve of points;
see the end of section 2). In [14,15] integrable rational mappings of the plane (called the QRT
family in [5]) were given which preserve the foliation (2). These maps take the form

x ′ = f1(y) − xf2(y)

f2(y) − xf3(y)
y ′ = g1(x

′) − yg2(x
′)

g2(x ′) − yg3(x ′)
(3)

where the functions fi and gi (i = 1, 2, 3) are certain quartic polynomials whose coefficients
are functions of the 18 parameters (given explicitly in (34)).

When δi = βi, κi = γi, λi = ξi in (2), each curve of the foliation becomes symmetric in
x and y. In this case, gi = fi in (3) and the mapping (3) corresponds to two applications of
the integrable symmetric QRT mapping

x ′ = y y ′ = f1(y) − xf2(y)

f2(y) − xf3(y)
. (4)

The QRT mappings (3) and (4) are measure preserving as well as being reversible (i.e.
the composition of two involutions) [14–16]. The symmetric map (4) is a generalization of a
reversible area-preserving integrable map constructed by McMillan [11]. McMillan’s family
of integrable maps preserve the foliation (2) when it is symmetric in x and y and α1, β1, . . . , λ1

are all zero. Consequently K only appears in the form µ0 +µ1K which can be reparametrized
to the case µ0 = 0, µ1 = 1 by K → µ0 + µ1K .

The purpose of this paper is to present integrable mappings of the plane that preserve
quite general biquadratic foliations of the plane of the form (2) with the linear functions of
K replaced by very general functions of K . In principle, these families can depend on an
arbitrarily large number of parameters (as distinct from the 18 parameters in the QRT family).
These new integrable mappings are reversible and measure preserving and contain the QRT
mappings (3) and (4) as special cases.

It is very significant that the integrable mappings presented here can be formulated as
generalized versions of the form of mapping originally considered by McMillan or of an
asymmetric counterpart given in [18, appendix A]. To be more explicit, on each curve of
the invariant biquadratic foliation, the mapping acts as (what we will call) a symmetric or
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asymmetric McMillan map. However, this McMillan map changes from curve to curve so we
call the new integrable maps curve-dependent McMillan (CDM) maps. In particular, the QRT
maps can be seen as particular cases of them. Although the global explicit form of the CDM
mappings presented here is often not written down, this proves irrelevant to many features of
the dynamics.

The plan of the paper is as follows. In sections 2 and 3, we define the maps and give
examples of them, including showing how the QRT maps are a special case. In section 4, we
discuss the issue of a normal form for the dynamics when the biquadratic foliation is symmetric
in x and y. In section 5, we give a Lax pair for a large subclass of maps of the form (4). More
details of the maps presented here, particularly the ones that preserve an asymmetric foliation,
will be given in [8].

2. Curve-dependent McMillan form and preservation of biquadratic curves

Consider the function

B(x, y,K) = α(K)x2y2 + β(K)x2y + δ(K)xy2 + γ (K)x2 + κ(K)y2

+ε(K)xy + ξ(K)x + λ(K)y + µ(K) (5)

where the nine coefficients α, . . . , µ are in general functions of a parameter K . For each K

B(x, y,K) = 0 (6)

defines a biquadratic curve in the (x, y) plane. We can alternatively write (6) using a dot
product

B(x, y,K) = X · A(K) Y = 0 (7)

where

X :=
(
x2

x

1

)
Y :=

(
y2

y

1

)
(8)

and

A(K) :=
(
α(K) β(K) γ (K)

δ(K) ε(K) ξ(K)

κ(K) λ(K) µ(K)

)
. (9)

The following proposition establishes, for any value of the parameter K , two automorphisms
of the curve (6).

Proposition 1. Let (x ′, y ′) = Gi(K) (x, y) be the image of (x, y) under either of the following
involutions, parametrized by K:

G1(K) : x ′ = x y ′ = −y − β(K)x2 + ε(K)x + λ(K)

α(K)x2 + δ(K)x + κ(K)
(10)

and

G2(K) : x ′ = −x − δ(K)y2 + ε(K)y + ξ(K)

α(K)y2 + β(K)y + γ (K)
y ′ = y. (11)

Both involutions satisfy

B(x ′, y ′,K) = B(x, y,K) (12)

with B(x, y,K) given by (5). In particular, if (x, y) satisfy B(x, y,K) = 0 for some fixed K ,
then B(x ′, y ′,K) = 0. G1 and G2 are the most general non-identity automorphisms fixing
one coordinate that satisfy (12).
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Proof. Consider G1(K). It is easy to check that it is an involution for any value of K .
Furthermore, from (10) we have (suppressing the K dependence for convenience)

(y ′ + y)(αx2 + δx + κ) + (βx2 + εx + λ) = 0. (13)

Multiplying both sides of (13) by (y ′ − y) and separating terms involving y ′ and y gives

y ′2(αx2 + δx + κ) + y ′(βx2 + εx + λ) = y2(αx2 + δx + κ) + y(βx2 + εx + λ). (14)

The latter is equivalent to (12) if x ′ = x. Conversely, working backwards from (12), it is also
clear that G1(K) is the unique non-identity automorphism that both fixes the x coordinate and
preserves B(x, y,K). A particular case of (12) is that G1(K) is an automorphism of the curve
B(x, y,K) = 0.

Similar reasoning establishes the analogous result for G2. �

Since G1(K) and G2(K) preserve the biquadratic curve (7) for each K , then so does their
composition Ma(K) := G1(K) ◦ G2(K) given by

Ma(K) : x ′ = −x − δ(K)y2 + ε(K)y + ξ(K)

α(K)y2 + β(K)y + γ (K)

y ′ = −y − β(K)x ′2 + ε(K)x ′ + λ(K)

α(K)x ′2 + δ(K)x ′ + κ(K)
.

(15)

We use the subscript ‘a’ in Ma(K) to refer to the fact that curve (6) or (7) is asymmetric in x

and y (equivalently, the matrix A in (9) is asymmetric). When the biquadratic (6) is symmetric
in x and y, we can write it with six coefficients

Bs(x, y,K) = α(K)x2y2 + β(K)(x2y + xy2) + γ (K)(x2 + y2)

+ε(K)xy + ξ(K)(x + y) + µ(K) = 0 (16)

equivalently the matrix of (9) is now symmetric: A(K) = A(K)T (superscript T denotes
matrix transpose) with δ(K) = β(K), κ(K) = γ (K) and λ(K) = ξ(K). In this case, another
involutory automorphism of the curve Bs(x, y,K) = 0 is clearly

Gs : x ′ = y y ′ = x. (17)

It follows that the mapping Ms(K) := G1(K) ◦ Gs given by

Ms(K) : x ′ = y y ′ = −x − β(K)y2 + ε(K)y + ξ(K)

α(K)y2 + β(K)y + γ (K)
(18)

is also an automorphism of the curve (and in fact in this case (15) corresponds to Ms(K)2).
Consider varying K in (7)–(9) to give a one-parameter family of curves in the plane. The

maps Ma(K) or Ms(K) then represent a one-parameter family of curve automorphisms, each
preserving the corresponding biquadratic curve in the family.

An important motivation for us is the previously discovered special case of the family
of curves obtained from taking (6) or (7)–(9) when α(K) = α0, β(K) = β0, . . . , ε(K) =
ε0, λ(K) = λ0 are constants (i.e. independent of K) and µ(K) = K as follows:

α0x
2y2 + β0x

2y + δ0xy
2 + γ0x

2 + κ0y
2 + ε0xy + ξ0x + λ0y + K = 0. (19)

The family (19) can be used to provide a foliation of the plane, i.e. each point (x, y) belongs
on a unique biquadratic curve specified by its value K . The range of K needed to include
all points of the plane can be readily calculated: for example, if α0, γ0, κ0 are all positive,
K ∈ (−∞,Kmax), Kmax constant, whereas if α0, γ0, κ0 are non-zero and of mixed sign,
K ∈ (−∞,+∞). Since µ(K) does not appear in (15) and (18), it follows in the case of (19)
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that Ma(K) (Ms(K)) are in fact K-independent, taking the same form on every curve of the
foliation. Consequently, we can define global rational mappings of the plane

Ma : x ′ = −x − δ0y
2 + ε0y + ξ0

α0y2 + β0y + γ0

y ′ = −y − β0x
′2 + ε0x

′ + λ0

α0x ′2 + δ0x ′ + κ0
(20)

respectively,

Ms : x ′ = y y ′ = −x − β0y
2 + ε0y + ξ0

α0y2 + β0y + γ0
(21)

that preserve the biquadratic foliation (19) in general, respectively, when (19) is symmetric
in x and y. It is easy to check that Ma or Ms are area preserving. Furthermore, it is clear
by construction that Ma or Ms are reversible mappings since they are compositions of two
involutions: Ma = G1 ◦ G2, Ms = G1 ◦ Gs where G1 and G2 are the obvious anti area-
preserving maps of the plane obtained from the K-independent versions of G1(K) and G2(K)

extended to the whole plane (cf [10, 18] for properties of reversible dynamical systems).
The map Ms of (21) was discovered by McMillan [11] and we will call it the symmetric

McMillan map1. The map Ma of (20) was given in [18, appendix A] and we will call it
the asymmetric McMillan map. Note that the symmetric McMillan map Ms and asymmetric
McMillan mapMa are just area-preserving cases of the symmetric QRT map (4) and asymmetric
QRT map (3), respectively.

What we now have in mind is to consider the general family of curves (6) or (7)–(9) where
all the coefficients are possibly functions ofK . Typically curves from this family will intersect
each other with some points of the plane belonging to multiple curves and other points not
contained on any curves of the family. However, we will assume that the following condition
is satisfied so as to guarantee that the family defines a foliation of the plane.

Condition F. The equation B(x, y,K) = 0 defines globally K = k(x, y) as a smooth real-
valued function for all (x, y).

It is certainly not necessary that one can actually solve globally for k(x, y), rather we want
a global implicit function theorem that just says that such a function exists. In the following
section, we will show that imposing

∂B

∂K
(x, y,K) = X · dA(K)

dK
Y > 0 (22)

for all (x, y,K) is a sufficient and easy-to-apply condition that gives condition F when
α(K), . . . , µ(K) are polynomial or rational functions of K (with care (22) can also be used to
help construct examples when some of the coefficient functions are not rational). Furthermore,
we show that condition F can actually be relaxed somewhat.

Assume then that condition F is satisfied so that a foliation of the plane by biquadratic
curves exists. With condition F satisfied, Ma(K) and Ms(K) can be used to create smooth
global maps of the plane that preserve each curve of the foliation by biquadratic curves (6),
respectively (16). Specifically, these new maps of the plane which we denote La, respectively
Ls, are formed by solving B(x, y,K) = 0 for K = k(x, y) and substituting in Ma(K),

1 McMillan [11] actually discovered the integrable mapping Ms with ξ0 ≡ 0.
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respectively Ms(K), so that

La := Ma(k(x, y)) : x ′ = −x − δ(K)y2 + ε(K)y + ξ(K)

α(K)y2 + β(K)y + γ (K)

∣∣∣∣
K=k(x,y)

y ′ = −y − β(K)x ′2 + ε(K)x ′ + λ(K)

α(K)x ′2 + δ(K)x ′ + κ(K)

∣∣∣∣
K=k(x,y)

(23)

and
Ls := Ms(k(x, y)) : x ′ = y

y ′ = −x − β(K)y2 + ε(K)y + ξ(K)

α(K)y2 + β(K)y + γ (K)

∣∣∣∣
K=k(x,y)

.
(24)

We will use, for brevity, the notation |K=k(x,y) to indicate that K is replaced by k(x, y).
Sometimes it will be possible to solve explicitly for k(x, y) and obtain closed form expressions
for La and Ls. However, La and Ls are still well defined maps of the plane for k(x, y) defined
implicitly. For example, the numerical calculation of the orbit of (x0, y0) under La involves
solving B(x0, y0,K) = 0 to find K = k0 = k0(x0, y0) and then iterating Ma(k0) for the initial
point. Examples of both implicit and explicit calculation of k(x, y) will be given below. In
either case, since La and Ls both satisfy B(x, y,K) = 0 ⇒ B(x ′, y ′,K) = 0, they possess
the integral

k(x ′, y ′) = k(x, y). (25)

It is clear from their definitions thatLa andLs are in general certainly not rational mappings
over the plane (e.g. see example 2 of the next section). However, significantly, for each curve
of the foliation (i.e. for each fixed K) the action of La or Ls is rational on the curve, indeed the
dynamics of La (Ls) on each curve is that of an asymmetric (symmetric) McMillan map. For
this reason, when condition F holds and the mapping equations in (23), (24) are dependent on
K , we will call La (Ls) an asymmetric (symmetric) curve-dependent McMillan map (CDM).
Of course, in this general situation, La and Ls are, by construction, also reversible mappings
since they are the composition of two involutions: La = G1(k(x, y)) ◦ G2(k(x, y)) and
Ls = G1(k(x, y)) ◦ Gs.

Another way to view the dynamics of the CDMs La or Ls is in the three-dimensional
space (x, y,K) with the mapping equations of (15) or (18) augmented by adding the dynamics
K ′ = K in the third coordinate. These associated three-dimensional maps preserve, from (12),
the surfaces B(x, y,K) = C with C an arbitrary constant, which foliate the three-dimensional
space. Condition F means that the surface B(x, y,K) = 0 is the graph of the function
k(x, y) and the CDMs are the restriction of the associated three-dimensional maps to the
invariant surface B(x, y,K) = 0 followed by projection onto the (x, y) plane. On each
plane with K constant, Ma(K) (Ms(K)) can be considered not only as an automorphism of
the curve B(x, y,K) = 0 but extends to a global rational mapping of the plane equal to
the asymmetric (symmetric) McMillan map that preserves the entire biquadratic foliation of
the plane B(x, y,K) = C (Bs(x, y,K) = C). The foliation (7) that we are interested in
corresponds to choosing one curve (that with C = 0) from each such foliation and projecting
it down to the (x, y) plane; with condition F satisfied, this set of curves is a new foliation of
the plane since it is precisely the set of level curves of k(x, y).

This geometric viewpoint in the (x, y,K) space can be used to show that the CDM
mappings La or Ls are measure preserving. Recall that L : (x, y) �→ (x ′, y ′) is measure
preserving [18] with density m(x, y) if the Jacobian determinant J (x, y) := det dL(x, y) can
be written

J (x, y) = ± m(x, y)

m(x ′, y ′)
⇒
∫
A

m(x, y) dx dy = ±
∫
L(A)

m(x ′, y ′) dx ′dy ′ (26)
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Figure 1. The phase portrait of the symmetric CDM map L1 of example 1 on the square
[−5, 5] × [−5, 5] is shown in (VI) in the bottom right-hand corner. Pictures (I)–(V) show the
phase portraits of the five McMillan maps obtained from M1(K) by respectively fixing K = K0
with K0 ∈ {3, 0.411 76,−0.206 57,−0.829 82,−4.561 52}. The bold curve in each of (I)–(V) is
B1(x, y,K0) = 0, and the sequence shows how the phase portrait of L1 is built up from one curve
taken from the phase portrait of each McMillan map.

for any region A in the plane (the ± sign is taken according to whether L is orientation
preserving/reversing; area preservation corresponds to m(x, y) ≡ 1). In [8] it is shown that
La and Ls satisfy (26) with

m(x, y) =
[

∂B

∂K
(x, y,K)

∣∣∣∣
K=k(x,y)

]−1

=
[
X · dA

dK
(k(x, y)) Y

]−1

. (27)

To illustrate the above discussion, consider the following explicit example of a CDM.

Example 1.

B1(x, y,K) = (3K + 1)x2y2 + (K − 1)(x2y + xy2) − 6K(x2 + y2) − xy + K − 3. (28)

Since B1(x, y,K) is symmetric in x and y, the CDM map L1 that preserves the foliation
B1(x, y,K) = 0 takes theLs form. Denoting the solution ofB1(x, y,K) = 0 byK = k1(x, y),
we have

L1 = M1(K) |K=k1(x,y) : x ′ = y

y ′ = −x − (K − 1)y2 − y

(3K + 1)y2 + (K − 1)y − 6K

∣∣∣∣
K=k1(x,y)

.
(29)

Figure 1 shows how the phase portrait of the CDM map L1 is built up from one curve taken
from the phase portrait of each McMillan map M1(K). In this example, it is clearly possible
to solve B1(x, y,K) = 0 explicitly for k1(x, y):

k1(x, y) = − x2y2 − (x2y + xy2) − xy − 3

3x2y2 + (x2y + xy2) − 6(x2 + y2) + 1
. (30)

Substituting this into M1(K) gives an alternative explicit form for the map L1:

L1 = M1(k(x, y)) : x ′ = y

y ′ = y(6y3 + 6y2 + 2y − 1) − 2x(3y4 − 3y3 − 5y2 − y + 9)

2(3y4 − 3y3 − 5y2 − y + 9) − xy(4y3 + 3y2 − 5y − 6)
.

(31)
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The explicit form (31) of the CDM L1 shows that it is a QRT map (4). This is true in
general: the QRT family [14–16] can be rederived as a particular case of CDM maps. The
foliation (2) is a special case of (6) with α(K) = α0 + Kα1, . . . , µ(K) = µ0 + Kµ1 being
affine functions of K with αi, . . . , µi (i = 0, 1) being 18 arbitrary constants. The foliation (2)
can be written

BQRT(x, y,K) = X · (A0 + KA1)Y = X · A0Y + K(X · A1Y ) = 0 (32)

where A0 and A1 are constant coefficient matrices of the form (9). Provided X ·A1Y �= 0, we
can solve (32) explicitly for K to find

k(x, y) = − X · A0Y

X · A1Y
. (33)

If we substitute this expression for k(x, y) into (23) with α(K) = α0 + Kα1, . . . , λ(K) =
λ0 + Kλ1, we obtain after manipulation the asymmetric QRT mapping form (3) where fi and
gi can be neatly expressed as components of cross products

(f1, f2, f3)(y) = (A0Y ) × (A1Y ) (g1, g2, g3)(x
′) = (AT

0X
′) × (AT

1X
′). (34)

Similarly, substituting (33) into Ls of (24) when A0 and A1 are symmetric results in (4) with
fi of (34). It is seen that Example 1 is precisely an example of a symmetric CDM Ls which
can also be written in the QRT form (31). Measure preservation of the QRT maps (3) and (4)
with m(x, y) = [X ·A1Y ]−1 (which is consistent with (27)) was previously proved in [16,18].

Whenever (x, y) satisfies X · A1Y = 0 in (32), BQRT(x, y,K) = X · A0Y is no
longer a function of K (consistent with (22) failing since, for the QRT foliation (32),
∂B
∂K

(x, y,K) = X ·A1Y ). The set of points on the curve X ·A1Y = 0 satisfying X ·A0Y �= 0
does not strictly belong to the foliation (32) but can be considered to have K infinite from (33).
This set of points, if non-empty, is necessarily mapped to itself by the corresponding QRT map.
The set of (at most eight) points satisfying X ·A1Y = X ·A0Y = 0 satisfy (32) for any value of
K and, in the phase portrait of the corresponding QRT map, it is found that many curves of the
foliation pass through these points [15, figure 2]. In this way it is seen that the QRT maps are
examples in which the condition F and the associated (22) are relaxed somewhat from stated
above.

Finally, to end this section, we make a couple of technical remarks.

Remark 1. This concerns the generality of defining CDMs in terms of preserving the
foliation (7). If (22) is satisfied (and the extra assumptions mentioned in the next section
apply), then B(x, y,K) = C, with C a fixed constant, also defines globally K = kC(x, y) as a
function of x and y (so the k(x, y) in the discussion above is k0(x, y)) and this leads to another
foliation of the x–y plane which from (12) is preserved by (23) with k → kC . In fact, this can be
further extended and the CDMs can be viewed as the general solution to the following problem:
from a one-parameter family of McMillan maps Ma(K) in (x, y,K) space, is it possible to
create a new biquadratic foliation of the plane by choosing one curve B(x, y,K) = C(K),
where C(K) is a smooth function of K , from the phase portrait of each McMillan map in the
family (for some range of K)? This is possible if and only if the same one-parameter family
allows a biquadratic foliation B†(x, y,K) = 0 where B†(x, y,K) = B(x, y,K) − C(K)

differs from B(x, y,K) only in the coefficient µ†(K) = µ(K) − C(K). From the fact that
Ma(K) and Ms(K) do not depend on µ(K), (12) implies B†(x ′, y ′,K) = B†(x, y,K) for
these maps and vice versa.

Remark 2. As the biquadratic (2) or (32) for the QRT family illustrates, the biquadratics
B(x, y,K) = 0 we are considering may depend on additional parameters other than K which
enter into their coefficient functions α(K), . . . , µ(K) etc (see also (42) and example 2 below).
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We choose to suppress this and just indicate the distinguished parameterK which is solved from
B(x, y,K) = 0 (whence K = k(x, y) will in general depend on the additional parameters).

3. Condition for foliation and examples

In this section, we discuss how (22) is sufficient to guarantee condition F and give some more
examples of the integrable CDM mappings La and Ls.

Consider a fixed x and y. Then B(x, y,K) of (5) is a function of K built up as a linear
combination of the coefficient functions α(K), . . . , µ(K). We assume that the coefficient
functions are defined and smooth for all K so that B(x, y,K) is also smooth and that its graph
is connected. When (22) holds for all (x, y,K), it implies that B(x, y,K) is a monotone
increasing function of K and hence injective2. It follows that if there exists a solution to (6)
so that B(x, y,K) has a zero and then this value of K is unique.

If the coefficient functions α(K), . . . , µ(K) in (5) are polynomial or everywhere-defined
rational functions, then injectivity of B(x, y,K) as a function of K implies surjectivity. Hence
for every (x, y) in the plane, there is a unique solution K to B(x, y,K) = C for C constant.
In particular this is true for the case C = 0 of (6) so that every point in the plane belongs to a
unique curve from the family (6) meaning that they foliate the plane.

Suppose the coefficient functions α(K), . . . , µ(K) are not all polynomial or everywhere-
defined rational functions of K . Since in general an everywhere-defined injective real
function is not surjective and need not have a zero (for example exp(K)), we need to impose
extra conditions on B(x, y,K) in order to guarantee a solution to (6). For example, it is
sufficient to check that for any (x, y) it is positive at some value of K and negative at
another value or to check the behaviour at infinity (limK→∞ B(x, y,K) = D+ > 0 and
limK→−∞ B(x, y,K) = D− < 0).

The above discussion indicates sufficient conditions that guarantee that (6) implies the
existence of a global functionK = k(x, y)defined everywhere in the plane. Condition (22) also
guarantees via the local implicit function theorem that k(x, y) is smooth in every neighbourhood
of (x, y). In fact, the knowledge that B(x, y,K) = 0 has globally only one solution for each
(x, y) guarantees the global smoothness of k(x, y).

We now give some examples of foliations of the plane (6) for which B(x, y,K)

satisfies (22) and has, in the case of non-polynomial coefficients, the above-mentioned
behaviour to guarantee a zero. Condition (22) requires that the biquadratic X · dA(K)

dK Y

be positive everywhere. Viewing this as a quadratic polynomial in y say, we can write

∂B

∂K
(x, y,K) = Py2 + Qy + R (35)

with

P := α′(K)x2 + δ′(K)x + κ ′(K)

Q := β ′(K)x2 + ε′(K)x + λ′(K)

R := γ ′(K)x2 + ξ ′(K)x + µ′(K).

In (35), we require that P �= 0 implies that the discriminant & = Q2 − 4PR is negative,
or P = 0 implies Q = 0. Selecting coefficient functions whose derivatives satisfy these
conditions can be somewhat complicated in general, but a useful special case is given by

B(x, y,K) = x2y2 + γ (K)x2 + κ(K)y2 + ε(K)xy + µ(K). (36)

2 Without loss of generality we avoid the monotone decreasing condition ∂B
∂K

(x, y,K) < 0 since it corresponds to
B → −B and the same biquadratic foliation (6).
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Figure 2. Phase portrait of L2 of example 2 on the
square [−4, 4] × [−4, 4].

In this case, we have P = κ ′(K) and

&(x, y,K) = (ε′(K)2 − 4κ ′(K) γ ′(K)) x2 − 4κ ′(K) µ′(K) (37)

so that (22) is satisfied provided

κ ′(K), µ′(K) > 0 and ε′(K)2 < 4κ ′(K) γ ′(K). (38)

When (36) is symmetric, κ(K) = γ (K) and (38) becomes

γ ′(K), µ′(K) > 0 and ε′(K)2 < 4γ ′(K)2. (39)

A very useful way we have found of creating examples is as follows. Let r(K), s(K),
u(K) and v(K) be arbitrary everywhere-defined functions of K and let w(K) be positive for
all K . Define

∂B

∂K
(x, y,K) := (r(K)xy + s(K)x + u(K)y + v(K)) 2 + w(K) > 0. (40)

By construction, (22) is immediately satisfied. The result of expanding (40) and then integrating
with respect to K can be written

B(x, y,K) =
∫ K

0

∂B

∂t
(x, y, t) ∂t + X · A0Y (41)

where A0 is an arbitrary constant matrix. Equation (41) corresponds to an asymmetric
biquadratic B(x, y,K) in general and the symmetric biquadratic Bs(x, y,K) if and only if
s(K) = u(K) in (40). We remark that without the addition of w(K), the right-hand side
of (40) corresponds to the biquadratic ∂B

∂K
(x, y,K) written in the quadratic form (35) having a

repeated zero in y, equivalently having discriminant & = Q2 − 4PR equal to 0. The effect of
w(K) is to push the quadratic Py2 + Qy + R away from the axis so that it is never zero. The
method based on (40) contains essentially five arbitrary functions in the asymmetric case and
four in the symmetric case, which compares with the nine coefficient functions of B(x, y,K)

of (6) and six of Bs(x, y,K) of (16).
An illustration of (40) and (41) in the symmetric case is to take (40) with r(K) = α2 +α1K ,

s(K) = u(K) = β2 + β1K , v(K) = γ2 + γ1K and w(K) = ε2
2 + ε2

1K
2. Using (41) with
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X · A0Y = α0x
2y2 + β0(x

2y + xy2) + γ0(x
2 + y2) + ε0xy + ξ0(x + y) + µ0, and multiplying

through by 3, gives a symmetric biquadratic (16) with

α(K) = α2
1K

3 + 3α1α2K
2 + 3α2

2K + 3α0

β(K) = 2α1β1K
3 + 3(α1β2 + α2β1)K

2 + 6α2β2K + 3β0

γ (K) = β2
1K

3 + 3β1β2K
2 + 3β2

2K + 3γ0

ε(K) = 2(α1γ1 + β2
1 )K

3 + 3(α1γ2 + α2γ1 + 2β1β2)K
2 + 6(α2γ2 + β2

2 )K + 3ε0

ξ(K) = 2β1γ1K
3 + 3(β1γ2 + β2γ1)K

2 + 6β2γ2K + 3ξ0

µ(K) = (γ 2
1 + ε2

1)K
3 + 3γ1γ2K

2 + 3(γ 2
2 + ε2

2)K + 3µ0.

(42)

By construction, this symmetric biquadratic is cubic in K and has 14 additional parameters.
The corresponding CDM Ls will have 14 parameters in it. It is clear that by increasing the
degree of K in polynomial choices of r(K), s(K), v(K) and w(K) in such a way that the
corresponding biquadratic B(x, y,K) has odd degree in K , we can satisfy (22) and create a
CDM with arbitrarily many parameters in it.

As with example 1 of the previous section, the examples below correspond to symmetric
biquadratic foliations (16) (cf [8] for asymmetric examples). The corresponding integrable
CDM maps are given byLs of (24) after substituting the appropriate coefficient functionsα(K),
β(K), γ (K), ε(K) and ξ(K), and finding (implicitly or explicitly) the solution K = ki(x, y)

of Bs(x, y,K) = 0.

Example 2. A particular example of (42) is (α2, α1, α0, β2, β1, β0, γ2, γ1, γ0, ε2, ε1, ε0, ξ0, µ0)

= (−6, 0, 7,−3,−1,−6, 2, 4, 4,−5, 1, 9, 2, 1), i.e.

B2(x, y,K) = 3(36K + 7)x2y2 + 18(K2 + 6K − 1)(x2y + xy2)

+(K3 + 9K2 + 27K + 12)(x2 + y2) + (2K3 − 54K2 − 18K + 27)xy

−2(4K3 + 21K2 + 18K − 3)(x + y) + 17K3 + 24K2 + 87K + 3 = 0. (43)
The CDM map Ls preserving this foliation is
L2 : x′ = y

y′ = −x − 18(K2 + 6K − 1)y2 + (2K3 − 54K2 − 18K + 27)y − 2(4K3 + 21K2 + 18K − 3)

3(36K + 7)y2 + 18(K2 + 6K − 1)y + (K3 + 9K2 + 27K + 12)

∣∣∣∣∣
K=k2(x,y)

.
(44)

Part of the phase portrait of L2 is shown in figure 2 (the phase portrait is created using [2]).
The phase portrait is drawn by choosing representative points in the plane, solving (43)
numerically for the unique solution K = k2(x, y) and then iterating L2. The phase portrait
shows four saddle fixed points on the line y = x (which is the so-called symmetry line [18] of
the component involution (17)). An elliptic two-cycle is also visible.

Since B2(x, y,K) is a cubic polynomial in K , it is possible in this case to find k2(x, y)

explicitly. Hence, if desired, L2 can be written in a closed form that involves cube roots
(highlighting the fact that a CDM map in general need not be a rational map).

Example 3.

B3(x, y,K) = x2y2 + (3K + 5) (x2 + y2) − 2(K + cosK) xy + 1 = 0. (45)

Part of the phase portrait of L3 : x ′ = y, y ′ = −x + 2(K+cos(K))y

y2+3K+5

∣∣
K=k3(x,y)

preserving this
foliation is shown in figure 3. The biquadratic curves (45) are examples of the symmetric
case of (36) with κ(K) = γ (K) and µ(K) ≡ 1. By construction, they satisfy γ ′(K) > 0
and ε′(K)2 < 4γ ′(K)2 so that &(x, y,K) of (37) is negative except at (0, 0) where
∂B
∂K

(0, 0,K) = 0 (i.e. (22) fails there). So in this example K is not defined at the origin
but Ls clearly fixes the origin so we can extend the foliation and the mapping to include
(0, 0). Also note that (45), lacking the odd terms usually present in (16), possesses reflection
symmetry in both the line y = x and the line y = −x, as seen in figure 3.
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Figure 3. Phase portrait of L3 of example 3 on the
square [−5, 5] × [−5, 5].

Example 4.

B4(x, y,K) = 1
2 (K + cos(K) sin(K)) x2y2 − cos2(K)(x2y + xy2)

+ 1
2 (K − cos(K) sin(K))(x2 + y2) + (K + 2 cos(K)

+2K sin(K) − cos(K) sin(K)) xy + 2(sin(K)

−K cos(K))(x + y) + 1
3K(K2 + 3) = 0. (46)

This example is created by integrating (40) with r(K) = cosK , s(K) = u(K) = sinK ,
v(K) = K and w(K) = 1. One finds that irrespective of x and y, the dominant term of
B4(x, y,K) at ±∞ is 1

3K
3 so clearly limK→±∞ B4(x, y,K) = ±∞.

Example 5.

B5(x, y,K) = 1
15K(3K4 + 10K2 + 15) x2y2 + 2eK(3 + K2 − 2K)(x2y + xy2)

+ 1
2 e2K(x2 + y2) + (e2K + 1

2K
4 + K2) xy

+2eK(K − 1)(x + y) + 1
3K(K2 + 3) = 0. (47)

This example is created by integrating (40) with r(K) = K2 + 1, s(K) = u(K) = eK ,
v(K) = K and w(K) = 1. Again, irrespective of x and y, limK→±∞ B5(x, y,K) = ±∞ so
that K(x, y) is well defined implicitly by B5(x, y,K) = 0 for all points.

A nice feature of the condition (22) that allows further generation of examples is its additive
nature. Thus suppose that we have {Bi(x, y,K) : 1 � i � N} such that ∂Bi

∂K
(x, y,K) � 0,

with at least one derivative when i = j strictly >0. Then B(x, y,K) = ∑
i ciBi(x, y,K),

with ci arbitrary non-negative numbers and cj > 0, satisfies (22) andB(x, y,K) = 0 produces
a foliation of the plane (modulo the endpoint conditions mentioned previously if Bi are not
all polynomial). This again shows how the biquadratic foliations and their corresponding
integrable maps can be made to depend on arbitrarily many parameters.

We end this section with one example illustrating the additive nature of (22).

Example 6.

B6(x, y,K) = (2 + 4K)x2y2 + K(x2y + xy2) + (4K + 5) (x2 + y2)

−(K + 2 cosK) xy + K(x + y) + K + 1 = 0. (48)
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Figure 4. Phase portrait of L6 of example 6 on the
square [−5, 5] × [−5, 5].

Part of the phase portrait of L6 : x ′ = y, y ′ = −x + Ky2−(K+2 cos(K))y+K
(2+4K)y2+Ky+4K+5

∣∣
K=k6(x,y)

preserving
this foliation is shown in figure 4. It shows one elliptic point on the line y = x in the third
quadrant and a hyperbolic symmetric two-cycle in the second and fourth quadrants (where
the curves are seen to intersect). Note that B6(x, y,K) = B3(x, y,K) + BQRT(x, y,K) with
B3(x, y,K) of (45) and BQRT(x, y,K) = x2y2 +K(4x2y2 + (x2y +xy2)+ (x2 +y2)+xy + (x +
y) + 1) taken from a symmetric QRT foliation (32). We have ∂B3

∂K
(x, y,K) � 0 (with equality

at the origin) and ∂BQRT

∂K
(x, y,K) > 0 so that ∂B6

∂K
(x, y,K) > 0.

4. Normal form for symmetric biquadratics

In this section we consider a normal form for the symmetric biquadratic foliation (16) and the
associated mapping Ls of (24).

Consider the problem of looking for a zero x of a quartic polynomial

R(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0 (49)

where ai are constants, a4 �= 0. In the theory of elliptic integrals, there is a method due to
Legendre that converts this problem into looking for a zero x̄ of a quartic polynomial containing
only even terms [6, 7]. That is, in the generic situation there exist real p and q such that if we
set

x̄ = f1(x) = p − x

x − q
(50)

then if x satisfies (49), x̄ satisfies

R̄(x̄) = ā4x̄
4 + ā2x̄

2 + ā0 = 0. (51)

In (50), p and q are (real) functions of the (real and/or complex) zeros of R(x). If a certain
relationship between the zeros holds, (50) cannot be used but instead a translation

x̄ = f2(x) = x + r (52)

with r real can be used instead to give (51) (see [7, article 2] for details). Note that (50) and (52)
are invertible transformations.
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The above facts can be exploited in the case of the symmetric biquadratic foliation (16)
to give, for each curve of this foliation, a transformation of this curve into a simpler canonical
form. Furthermore, the canonical mapping that preserves this transformed curve is a simpler
form of Ls of (24) (equivalently of Ms of (18) since Ls restricted to each curve is a McMillan
map). The proof of the following result is given in [8] and exploits the fact thatBs(x, x,K) = 0
takes the form (49).

Proposition 2. Suppose (x, y) satisfies Bs(x, y,K) = 0 with Bs(x, y,K) the symmetric
biquadratic (16). Then for each fixed K satisfying α(K) �= 0 there exists an invertible
transformation TK(x, y) : (x, y) �→ (x̄, ȳ) = (fK(x), fK(y)) with fK of the form (50)
or (52) such that

Bcan
s (x̄, ȳ, K) = x̄2ȳ2 + γ̄ (K)(x̄2 + ȳ2) + ε̄(K)x̄ȳ + µ̄(K) = 0. (53)

Furthermore, ifLs : (x, y) �→ (x ′, y ′) is the map (24) that preserves the curveBs(x, y,K) = 0,
then Lcan

s = TK ◦ Ls ◦ T −1
K : (x̄, ȳ) �→ (x̄ ′, ȳ ′) preserves the curve Bcan

s (x̄, ȳ, K) = 0 and is
given by:

Lcan
s : x̄ ′ = ȳ ȳ ′ = −x̄ − ε̄(K)ȳ

ȳ2 + γ̄ (K)
. (54)

With reference to this proposition, we note:

(i) if µ̄(K) �= 0, a rescaling

(x̄, ȳ) = |µ̄(K)|1/4 (x̂, ŷ) (55)

can be used so that B̂can
s (x̂, ŷ, K) = 0 takes the form (53) with ˆ variables and µ̂(K) = ±1

according as µ̄(K) >< 0. Note that whenever µ̄(K) = ±1 in (53),Lcan
s of (54) can be written

so as to depend on only one of ε̄(K) and γ̄ (K) by using (53) to eliminate one in favour
of the other;

(ii) the curveBcan
s (x̄, ȳ, K) = 0 has a double symmetry, being invariant under the interchange

of x̄ and ȳ together with rotation by π (so that Lcan
s commutes with −Id);

(iii) when γ̄ (K) > 0 (< 0) , Bcan
s (x̄, ȳ, K) = 0 is a bounded (unbounded) curve in the plane.

It is important to emphasize that proposition 2 allows one to simplify any given curve of
the foliation Bs(x, y,K) = 0 with α(K) �= 0 to Bcan

s (x̄, ȳ, K) = 0 and, correspondingly, to
simplify the dynamics on it from being generated by Ls to Lcan

s . It does not in general allow
one to do this simultaneously on different curves and so infer Lcan

s in a global way. In other
words, although considered globally Ls is a CDM map, Lcan

s is not. This is because the curves
of Bcan

s (x̄, ȳ, K) = 0 do not in general give a foliation; for different K , curves from this set
intersect as can easily be checked on a few examples. This is because the global transformation
of the plane built up by applying TK(x, y) on each curve labelled by K in the original foliation
is not injective in general and does not map the original foliation to a new one. A sufficient
condition for (53) to define a new foliation, and so for Lcan

s to be a CDM map, is (39) (with
bars added).

A special case when proposition 2 can be used in a global sense occurs when TK(x, y) is
independent of K (i.e. p(K) and q(K) of (50), or r(K) of (52), are independent of K). For
example, the symmetric biquadratic foliation

x2y2 − 4(x2y + xy2) + 31
4 (x

2 + y2) + 14xy − 27(x + y) + K = 0 (56)

is preserved (cf (19) and (21)) by the symmetric McMillan mapping (see figure 5(a))

x ′ = y y ′ = −x − −4y2 + 14y − 27

y2 − 4y + 31/4
. (57)
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Figure 5. Four representative biquadratic curves invariant under (57) are shown in (a) together
with their transformed versions in (b) and (c) which are preserved by, respectively, (59) and (64).

Using the transformation T : (x, y) �→ (x−2, y−2) in (56) produces the transformed foliation
Bcan

s (bars omitted)

x2y2 + 15
4 (x

2 + y2) − 2xy − 38 + K = 0 (58)

with Lcan
s another McMillan map given by (see figure 5(b))

x ′ = y y ′ = −x +
2y

y2 + 15/4
. (59)

As figure 5(a), (b) indicates, the centre of symmetry of the original foliation (56) is shifted to
the origin in (58) so as to produce the second symmetry with respect to the origin.

In (58), a further global transformation can be made that is, interestingly, K dependent.
It is easy to check that the range of K needed for (58) to foliate the plane is K ∈ (−∞, 38]
(K(0, 0) = 38). So µ(K) = K −38 � 0 in (58) and we introduce, following (55), the scaling
(x, y) �→ |µ(K)|−1/4 (x, y) = (38 − K)−1/4 (x, y) for K < 38 which now gives

x2y2 +
15

4
√

38 − K
(x2 + y2) − 2√

38 − K
xy − 1 = 0. (60)

Under the scaling, (59) becomes the corresponding CDM mapping

x ′ = y y ′ = −x +
2√

38−K
y

y2 + 15
4
√

38−K

∣∣∣∣∣
K=k(x,y)

. (61)

Despite the scaling varying on each curve of (58), the transformed family of curves (60)
together with the origin is still a foliation of the plane. In fact, with reparametrizing

K̃ := 1√
38 − K

, (62)

equation (60) becomes

x2y2 + 15
4 K̃ (x2 + y2) − 2K̃ xy − 1 = 0 (63)

which is linear in K̃ . This is of the form of the QRT foliation (2) and, indeed, solving (60) for√
38 − K and substituting in (61) produces the symmetric QRT mapping (4) as follows:

x ′ = y y ′ = −8y + 15x(y4 + 1)

−15(y4 + 1) + 8xy3
. (64)

The phase portrait of (64) in figure 5(c) shows that the curves of figure 5(b) are deformed into
a new foliation.
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This example of the application of a global K-dependent scaling to the foliation (58) can
be generalized. Suppose we have a similar McMillan-type foliation

x2y2 + γ0(x
2 + y2) + ε0xy + µ0 + K = 0 (65)

with constants γ0 > 0 and ε0 satisfying |ε0| < 2γ0. Then the range of K needed to
foliate the plane is K ∈ (−∞,−µ0] with the maximum value occurring at the origin since
K(0, 0) = −µ0. The scaling (x, y) �→ |µ(K)|−1/4 (x, y) = (−µ0 − K)−1/4 (x, y) for
K < −µ0 can always be applied to (65) to transform it into a QRT foliation

x2y2 + γ0K̃ (x2 + y2) + ε0K̃ xy − 1 = 0 (66)

with K̃ = 1/
√−µ0 − K . Due to the condition |ε0| < 2γ0, the origin is the only fixed point

of the associated QRT map and is elliptic.
Finally, another application of proposition 2 in a global sense is to the symmetric QRT

map itself. Consider the symmetric QRT foliation (32), that is, with A0 and A1 symmetric.
Since X · A0Y is a constant biquadratic independent of K , it follows that if α0 �= 0 we can
bring it to the form (53) with γ̄0, ε̄0 constant and (from (55)) µ̄0 ∈ {0,+1,−1}. In other words,
applying an invertible global transformation T : (x, y) �→ (x̄, ȳ) to (32) with α0 �= 0 brings it
to the form

B̄QRT(x̄, ȳ, K) = X̄ · Ā0Ȳ + K(X̄ · Ā1Ȳ ) = 0 (67)

in which X̄ · Ā0Ȳ depends on just two parameters. Consequently, the symmetric QRT
foliation (2) and corresponding map (4) with α0 �= 0 can always be made to depend
on eight parameters instead of the notional 12 parameters present in (32).

5. Lax Pair

A symmetric mapping of the plane

x ′ = y y ′ = F(x, y) (68)

with the identification (x, y) → (xn−1, xn) and (x ′, y ′) → (xn, xn+1), n ∈ Z being discrete
time, can be written as a second-order difference equation

xn+1 = F(xn−1, xn). (69)

Recall that a Lax pair for a second-order difference equation (69) which is measure preserving
is a pair of matrices Ln(xn, xn+1) and Mn(xn, xn+1) indexed by n satisfying

LnMn−1 = Mn−1Ln−1 (70)

and such that the compatibility condition for the two sides of (70) to be equal yields the
mapping (69). Since (70) gives the similarity of Ln and Ln−1 at each step of the evolution, it
follows that Ln and Ln−1 share the same matrix polynomial invariants and that the coefficients
of the characteristic polynomial:

P(λ) = det(λ1I − Ln) (71)

are invariant under the evolution (λ is the spectral parameter). If the coefficients are not all
constant, this yields a non-trivial integral I (xn, xn+1) for (69).

Consider the second-order difference equation

xn+1 + xn−1 = − β(K)x2
n + ε(K)xn + ξ(K)

x2
n + β(K)xn + γ (K)

(72)

which is the difference equation corresponding to Ms of (18) with α(K) �= 0 and normalized
coefficient functions so that β(K) in (72) corresponds to β(K) in (18) divided by α(K) etc.
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This difference equation includes the symmetric normal form (54) (omitting the bars) as a
special case. For each value of K , this is a McMillan map. In [12] (see also [5, section 1.4])
a Lax pair was given for a symmetric McMillan map of the plane corresponding to (72) with
β = ξ = 0 and γ < 0. We have been able to extend this to a Lax pair for (72) for each K .

Consider the matrices:

Ln(h) :=




a − e b − c + xn+1 1 0
0 0 b + c − xn 1
h 0 a + e b + c − xn+1

h(b − c + xn) h 0 0


 (73)

and

Mn−1(h) :=




a−e
b−c+xn

1 0 0

0 0 1 0
0 0 a+e

b+c−xn
1

h 0 0 0


 . (74)

Here a, b, c, e and h are arbitrary parameters (h is distinguished as a Floquet-type parameter
following [5]). One finds that Ln(h)Mn−1(h) = Mn−1(h)Ln−1(h) if and only if (72) holds
with

β(K) = −2c γ (K) = c2 − b2

ε(K) = 4c2 − 2a ξ(K) = 2(ac − eb + cb2 − c3).
(75)

Solving (75) for a, b, c and e gives

c = − β(K)

2
a = β2(K) − ε(K)

2
b =

√
β2(K) − 4γ (K)

2

e = β(K) (ε(K) − β2(K) + 2γ (K)) − 2ξ(K)

2
√
β2(K) − 4γ (K)

.

(76)

Furthermore, writing out det(Ln) we obtain the following constant of the motion:

I (xn, xn+1) = x2
n+1x

2
n + β(K) (x2

nxn+1 + xnx
2
n+1) + γ (K) (x2

n+1 + x2
n)

+ε(K) xn+1xn + ξ(K) (xn+1 + xn). (77)

In other words, the iterates of (72) lie on the biquadratic curve I (xn, xn+1) = D, where D is a
constant determined by initial conditions.

It is evident from (76) that (73), (74) represent a Lax pair for (72) for arbitrary values of
β(K), ε(K) and ξ(K) with γ (K) constrained by

γ (K) <
β2(K)

4
(78)

in order to keep the entries in the Lax pair real. For fixed K , this means we have a Lax pair
for a very general symmetric McMillan map (72) (e.g. certainly for arbitrary β(K), ε(K) and
ξ(K) and, say, γ (K) � 0 which clearly satisfies (78)). It follows from the previous section
that for each K the map (72) can be reduced to the normal form (54) which corresponds to
setting β(K) = ξ(K) = 0. It is seen from (76) and (78) that (73), (74) with c = e = 0
furnishes a Lax pair for the normal form (54) but only when γ (K) is negative. Of course, the
normal form (54) cannot be used in general as a global normal form for the dynamics.

Nevertheless, let us consider (72) in its own right as an example of an integrable symmetric
CDM mapping preserving the family of curves (16) with α(K) there set equal to 1 and the other
coefficients normalized by division by α(K). That is, assume that (16) defines a foliation of
the plane by, for example, satisfying (22). Then (73) and (74) can be used to provide a (global)
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Lax pair for the symmetric CDM mapping (72) whenever (16) can be solved explicitly for
K = k(x, y).

In particular, consider the 12-parameter symmetric QRT mapping (4) with fi given by (34)
with Ai symmetric (i.e. δi = βi , λi = ξi and κi = γi (i = 0, 1)) and α0 and α1 not both zero.
Written as a second-order difference equation, it is

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
. (79)

From the discussion at the end of section 2 and the form of Ls in (24), it follows that, provided
we exclude the single value K = −α0/α1 if α1 �= 0, this QRT map can also be written in the
form (72) with

β(K) = β0 + β1K

α0 + α1K
ε(K) = ε0 + ε1K

α0 + α1K

γ (K) = γ0 + γ1K

α0 + α1K
ξ(K) = ξ0 + ξ1K

α0 + α1K

(80)

and K = k(xn−1, xn) given by

k = − α0x
2
n−1x

2
n + β0(x

2
n−1xn + xn−1x

2
n) + γ0(x

2
n−1 + x2

n) + ε0xn−1xn + ξ0(xn−1 + xn) + µ0

α1x
2
n−1x

2
n + β1(x

2
n−1xn + xn−1x2

n) + γ1(x
2
n−1 + x2

n) + ε1xn−1xn + ξ1(xn−1 + xn) + µ1
.

(81)

Substituting (80) into (76) and whence into (73) and (74) furnishes a Lax pair for the symmetric
QRT mapping, provided we use K = k(xn, xn+1) in (73) and K = k(xn−1, xn) in (74), and
observe the constraint

4(α0 + α1K)(γ0 + γ1K) < (β0 + β1K)2 (82)

obtained from (78) together with (80). One finds that the relationship between the integral
I (xn−1, xn) of (77) obtained from the Lax pair and k(xn−1, xn) is

I = − µ0 + µ1k

α0 + α1k
. (83)

Condition (82) places some restrictions on the subset {α0, α1, β0, β1, γ0, γ1} of six
parameters in (79). The condition can be also written in terms of the polynomial

P(K) = (β2
1 − 4α1γ1)K

2 + 2(β0β1 − 2(α0γ1 + α1γ0)) K + (β2
0 − 4α0γ0) > 0 (84)

where P(K) has the discriminant

&(K) = 16 [(α0γ1 − α1γ0)
2 + (β0α1 − β1α0)(β0γ1 − β1γ0)]. (85)

Condition (84) must hold for the range of k in (81) achieved over the (xn−1, xn) plane. This
range can be worked out for a particular example, but let us consider the sufficient restrictions
in terms of γ0 and γ1 that result from imposing (84) for all K . To make the leading coefficient
of P(K) non-negative we introduce the parameter t � 0 such that

β2
1 − 4α1γ1 = t2. (86)

If α1 �= 0, this leads to the parametrized restrictions

γ1(t) = β2
1 − t2

4α1
(87)

and

γ0(t) ∈ (r−(t), r+(t)), (88)
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where

r±(t) := 2α1β0β1 − α0(β
2
1 + t2) ± 2 t |β0α1 − β1α0 |

4α2
1

. (89)

On the other hand, if α1 = 0 (and so α0 �= 0 by assumption), we find that (84) holding for all
K leads to (again t � 0)

γ0(t) = β2
0 − t2

4α0
(90)

and

γ1(t) ∈ (smin(t), smax(t)), (91)

where smin and smax are the smaller and larger values of

s±(t) := β1(β0 ± t)

2α0
. (92)

Some special (limiting) cases of these parametrized restrictions can be obtained directly
from (78) together with (80): (i) when β1 = β0 = 0 we find that γi and αi (i = 0, 1)
are proportional by the same negative number so that γ (K) < 0; (ii) we can always take
γ1 = γ0 = 0 in (87), (88) and (90), (91) for appropriate t so that γ (K) = 0.

The end result of the previous analysis is that we have a Lax pair for the symmetric QRT
map (72) with (80), (81) and α(K) �= 0 that holds in general for ten of the 12 parameters being
arbitrary and two parameters confined to an interval.

6. Concluding remarks

In this paper, we have introduced integrable mappings of the plane that preserve biquadratic
foliations and are of McMillan type on each curve. We have concentrated on the symmetric
foliation and corresponding symmetric map. This case is easier to deal with than the
asymmetric case. In [8], more details on both the symmetric and asymmetric maps will be
given, in particular the normal forms of the biquadratic curves and the possibility to parametrize
the dynamics on them by Jacobian elliptic functions will be discussed in detail. We are also
investigating a less restrictive condition than (22) for ensuring condition F.

An obvious extension of the ideas of this paper which is also being investigated is to
higher-dimensional mappings [17]. In this respect, McMillan maps in 2P dimensions, P � 2,
are given in [12]. Higher-dimensional analogues of the QRT planar maps (3) and (4) were
considered in [3,13]. What is obvious from the present paper is that many of the properties of
QRT maps can be found by treating them as generalizations of McMillan maps.
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